售价: ¥78.20 (7.9折)
  • 定价: ¥99.00
免运费详情
加入Prime可免运费
Hadoop大数据挖掘从入门到进阶实战(视频教学版... 已加入购物车
此商品不能使用“一键下单”
亚马逊的其他卖家
加入购物车
¥72.30
+ ¥5.00 运费
卖家: 北京国际图书城网络体验店
加入购物车
¥79.20
+ 免配送费
卖家: 北发图书网旗舰店 (本店已全面采用电子发票替代纸质发票)
加入购物车
¥79.20
+ 免配送费
卖家: 北京亚运村图书大厦
前翻 后翻
正在播放... 已暂停   您正在聆听的 Audible 音频版本的样品。
了解更多信息
查看此图片

Hadoop大数据挖掘从入门到进阶实战(视频教学版) 平装 – 2018年6月11日

| 天天低价·正品质优
|
分享
| 自营
广告

显示所有 2 格式和版本 隐藏其他格式和版本
亚马逊价格
全新品最低价 非全新品最低价
平装
¥78.20
¥72.30
促销信息: 满减 工行信用卡购书满150元返KU激活码 共2个促销

 
退换承诺: 此商品支持7天无理由退货 详情

一叶知秋 ,精品书定价4.9折封顶一叶知秋 ,精品书定价4.9折封顶,限页面内亚马逊指定自营图书(不含进口原版书、进口繁体中文书、第三方卖家商品、电子书),更多好书 点击查看详情>>

click to open popover

商品促销和特殊优惠
  • 工行信用卡购书满150元返KU激活码: 满足条件自动优惠
  • 工行信用卡购书满300元返KU激活码: 满足条件自动优惠

无需Kindle设备,下载免费Kindle阅读软件,即可在您的手机、电脑及平板电脑上畅享阅读。

  • iPhone/iPad/Mac
  • Android手机或平板电脑

请输入您的手机号码,获取Kindle阅读软件的下载链接。



基本信息

  • 出版社: 机械工业出版社; 第1版 (2018年6月11日)
  • 平装: 402页
  • 语种: 简体中文
  • 开本: 16
  • ISBN: 9787111600107, 711160010X
  • 条形码: 9787111600107
  • 商品尺寸: 24 x 18.4 x 2 cm
  • 商品重量: 680 g
  • 品牌: 机械工业出版社
  • ASIN: B07DQ9SJ8C
  • 用户评分: 分享我的评价
  • 亚马逊热销商品排名: 图书商品里排第62,423名 (查看图书商品销售排行榜)
  • 您想告诉我们您发现了更低的价格?

商品描述

作者简介

邓杰,博客园资深博主,资深大数据全栈开发者,极客学院大数据讲师,开源爱好者。善于开发大数据监控系统辅助日常工作,提升工作效率。主导开发了大数据自助类平台系统。开发并在GitHub上发布了Kafka系统监控管理工具Kafka Eagle,深受业内开发者的赞誉。作为极客学院特邀讲师,制作了多个技术视频,讲授Hadoop和Kafka等相关技术课程,广受学员好评。

目录

目录
前言
第1章 集群及开发环境搭建1
1.1 环境准备1
1.1.1 基础软件下载1
1.1.2 准备Linux操作系统2
1.2 安装Hadoop4
1.2.1 基础环境配置4
1.2.2 Zookeeper部署7
1.2.3 Hadoop部署9
1.2.4 效果验证21
1.2.5 集群架构详解24
1.3 Hadoop版Hello World25
1.3.1 Hadoop Shell介绍25
1.3.2 WordCount初体验27
1.4 开发环境28
1.4.1 搭建本地开发环境28
1.4.2 运行及调试预览31
1.5 小结34
第2章 实战:快速构建一个Hadoop项目并线上运行35
2.1 构建一个简单的项目工程35
2.1.1 构建Java Project结构工程35
2.1.2 构建Maven结构工程36
2.2 操作分布式文件系统(HDFS)39
2.2.1 基本的应用接口操作39
2.2.2 在高可用平台上的使用方法42
2.3 利用IDE提交MapReduce作业43
2.3.1 在单点上的操作43
2.3.2 在高可用平台上的操作46
2.4 编译应用程序并打包51
2.4.1 编译Java Project工程并打包51
2.4.2 编译Maven工程并打包55
2.5 部署与调度58
2.5.1 部署应用58
2.5.2 调度任务59
2.6 小结60
第3章 Hadoop套件实战61
3.1 Sqoop——数据传输工具61
3.1.1 背景概述61
3.1.2 安装及基本使用62
3.1.3 实战:在关系型数据库与分布式文件系统之间传输数据64
3.2 Flume——日志收集工具66
3.2.1 背景概述67
3.2.2 安装与基本使用67
3.2.3 实战:收集系统日志并上传到分布式文件系统(HDFS)上72
3.3 HBase——分布式数据库74
3.3.1 背景概述74
3.3.2 存储架构介绍75
3.3.3 安装与基本使用75
3.3.4 实战:对HBase业务表进行增、删、改、查操作79
3.4 Zeppelin——数据集分析工具85
3.4.1 背景概述85
3.4.2 安装与基本使用85
3.4.3 实战:使用解释器操作不同的数据处理引擎88
3.5 Drill——低延时SQL查询引擎92
3.5.1 背景概述93
3.5.2 安装与基本使用93
3.5.3 实战:对分布式文件系统(HDFS)使用SQL进行查询95
3.5.4 实战:使用SQL查询HBase数据库99
3.5.5 实战:对数据仓库(Hive)使用类实时统计、查询操作101
3.6 Spark——实时流数据计算104
3.6.1 背景概述104
3.6.2 安装部署及使用105
3.6.3 实战:对接Kafka消息数据,消费、计算及落地108
3.7 小结114
第4章 Hive编程——使用SQL提交MapReduce任务到Hadoop集群115
4.1 环境准备与Hive初识115
4.1.1 背景介绍115
4.1.2 基础环境准备116
4.1.3 Hive结构初识116
4.1.4 Hive与关系型数据库(RDBMS)118
4.2 安装与配置Hive118
4.2.1 Hive集群基础架构119
4.2.2 利用HAProxy实现Hive Server负载均衡120
4.2.3 安装分布式Hive集群123
4.3 可编程方式126
4.3.1 数据类型126
4.3.2 存储格式128
4.3.3 基础命令129
4.3.4 Java编程语言操作数据仓库(Hive)131
4.3.5 实践Hive Streaming134
4.4 运维和监控138
4.4.1 基础命令138
4.4.2 监控工具Hive Cube140
4.5 小结143
第5章 游戏玩家的用户行为分析——特征提取144
5.1 项目应用概述144
5.1.1 场景介绍144
5.1.2 平台架构与数据采集145
5.1.3 准备系统环境和软件147
5.2 分析与设计148
5.2.1 整体分析148
5.2.2 指标与数据源分析149
5.2.3 整体设计151
5.3 技术选型153
5.3.1 套件选取简述154
5.3.2 套件使用简述154
5.4 编码实践157
5.4.1 实现代码157
5.4.2 统计结果处理163
5.4.3 应用调度169
5.5 小结174
第6章 Hadoop平台管理与维护175
6.1 Hadoop分布式文件系统(HDFS)175
6.1.1 HDFS特性175
6.1.2 基础命令详解176
6.1.3 解读NameNode Standby179
6.2 Hadoop平台监控182
6.2.1 Hadoop日志183
6.2.2 常用分布式监控工具187
6.3 平台维护196
6.3.1 安全模式196
6.3.2 节点管理198
6.3.3 HDFS快照200
6.4 小结203
第7章 Hadoop异常处理解决方案204
7.1 定位异常204
7.1.1 跟踪日志204
7.1.2 分析异常信息208
7.1.3 阅读开发业务代码209
7.2 解决问题的方式210
7.2.1 搜索关键字211
7.2.2 查看Hadoop JIRA212
7.2.3 阅读相关源码213
7.3 实战案例分析216
7.3.1 案例分析1:启动HBase失败216
7.3.2 案例分析2:HBase表查询失败219
7.3.3 案例分析3:Spark的临时数据不自动清理222
7.4 小结223
第8章 初识Hadoop核心源码224
8.1 基础准备与源码编译224
8.1.1 准备环境224
8.1.2 加载源码228
8.1.3 编译源码230
8.2 初识Hadoop 2233
8.2.1 Hadoop的起源233
8.2.2 Hadoop 2源码结构图234
8.2.3 Hadoop模块包235
8.3 MapReduce框架剖析236
8.3.1 第一代MapReduce框架236
8.3.2 第二代MapReduce框架238
8.3.3 两代MapReduce框架的区别239
8.3.4 第二代MapReduce框架的重构思路240
8.4 序列化241
8.4.1 序列化的由来242
8.4.2 Hadoop序列化243
8.4.3 Writable实现类245
8.5 小结247
第9章 Hadoop通信机制和内部协议248
9.1 Hadoop RPC概述248
9.1.1 通信模型248
9.1.2 Hadoop RPC特点250
9.2 Hadoop R


买家评论

目前还没有用户评论
与其他买家分享您的想法